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This article reviews the subject of edge localized mode (fkcbhtrol using externally applied magnetic per-
turbations and proposes theoretical mechanisms that maspensible for the induced transport changes. The
first question that must be addressed is: what is the steicfumagnetic field within the plasma? Although
initial hypotheses focused on the possibility of the ci@abtf a region of stochastic field lines at the tokamak
edge, drift magnetohydrodynamics theory predicts thatmagig reconnection is strongly suppressed over the
region of the pedestal with steep gradients and fast peipaad rotation. Reconnection can only occur near
the location where the perpendicular electron velocityiskes, and hence the electron impedance nearly van-
ishes, or near the foot of the pedestal, where the plasmdfisiently cold and resistive. The next question
that must be addressed is: which processes are resporwmilileefobserved transport changes, nonlinearity,
turbulence, or stochasticity? Over the pedestal regiornrevioms and electrons rotate in opposite directions
relative to the perturbation, the quasilinear Lorentz éodecelerates the electron fluid and accelerates the ion
fluid. The quasilinear magnetic flutter flux is proportionalthe force and produces an outward convective
transport that becomes significant if the resistive layelttvbecomes smaller than the ion gyroradius. Over the
pedestal region where thie x B flow and the electrons rotate in opposite directions redativthe perturbation,
magnetic islands with a width on the order of the ion gyranadian directly radiate drift waves. If flux surfaces
are broken, the combination of stochastic electron tramispa ion viscous transport can lead to a large net
particle flux. Since there are many transport mechanisntsnthg be active simultaneously, it is important
to determine which physical mechanisms are responsiblElfd control and to predict the scaling to future
devices.

Copyright line will be provided by the publisher

1 Introduction

Next-generation tokamak fusion reactors need techniquestiuce the heat exhaust to a level that is acceptable
for the lifetime of plasma facing divertor components. Hiant events, such as edge localized modes (ELMs)
[1], which are associated with high-confinement mode (H-@)pahust limit the heat impulse that is delivered
Extrapolations of ELM sizes from present devices to ITERdme10-20 MW/event given estimates for the
pedestal height [2], yet tolerable ELM heat impulses mudirbged to less than 1 MW/event [3] or, perhaps,
even less. Such predictions for type-1 ELM sizes imply thaiiil be necessary to either suppress type-l ELMs or
mitigate their heat fluxes in order to maintain an acceptaiitertor lifetime [4]. It is important to note that, while
ELMs limit the confinement time by generating edge transgoltMs also play the beneficial role of flushing
impurities from the edge plasma. So-called ELM-free H-mogerating regimes have difficulty controlling
plasma density, lead to an undesirable build-up of high-guriies, and lead to a back-transition to L-mode
[1]. Any technique for controlling ELMs must also generat®egh transport to maintain density control and
keep impurities from poisoning the core. Hence, rather tampletely suppress ELMs, it may be desirable
to generate or actively trigger smaller edge instabilités pace that is consistent with tolerable erosion and
transport requirements.

* Corresponding author: e-majbseph5@linl.gov, Phone: +01 925422 3737, Fax: +01 925423 3484
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2 I. Joseph: ELM control, transport, and magnetic pertudoesti

This article reviews present theoretical understandiriel&fl control using externally generated non-axisymmetric
magnetic perturbations. This technique can be used torai®iELMs entirely (suppression) [5, 6, 7, 8], to con-
tinuously generate more benign edge instabilities (niga [9, 10], or to actively trigger smaller-scale ELMs at
a more rapid pace (triggering) [11, 12, 13]. Thus, updatéeR Tesigns have considered external coils that gen-
erate such perturbations [14, 15]. The next section preseltief overview of the presently known experimental
ELM control regimes that are induced by non-axisymmetrignaic perturbations. The recent review by Liang
[16] addresses the experimental status of ELM control usorgaxisymmetric magnetic perturbations as well as
a number of other control techniques such as ELM pacing tfirduel pellet injection or through axisymmetric
vertical jogs of the plasma surface. Operation in a speafitmne where type-1 ELMs are passively stabilized
and another instability dominates transport is anothepit@mt route for ELM mitigation. The review by Oyama
[17] discusses a number of such regimes including QH-mage-til ELMs, and type-V ELMs. New regimes
such as I-mode [18] may still await discovery.

The physics of non-axisymmetric perturbations is complek f@w issues have been solved completely, par-
ticularly at the plasma edge where there are strong gradferg. the pedestal), kinetic/neoclassical effects (e.g.
large trapped particle fraction at low collisionality) andanges in geometry and sources (e.g. separatrix and
neutrals). The general single-fluidagnetohydrodynamics (MH@)Qquations for the case of closed surfaces with
thin island layers has recently been reviewed by Boozer, [BEre the relation between non-ambipolar trans-
port due to non-axisymmetric fields and plasma torque isaemetl. A comprehensive set of multi-fluid transport
relations has recently been derived by Callen [20]. In theéepgal, it is important to retain drift effects when
treating so-called “resonant” magnetic perturbationstiysbations with a helicity that resonates with field lines;
.. k| o« m—qn = 0 wherem is the poloidal harmonigy is the toroidal harmonig is the safety factor, an&t is
the major radius. The reason is that (i) the diamagnetiafaqgies are typically larger than tiiex B frequency
and (ii) the collisionality is typically low enough that tlebaracteristic resistive scale length is smaller than the
ion gyroradius. If the response layer is of the order of theggroradius, then a kinetic description will be nec-
essary. For simplicity, here, two-fluid drift-MHD equat®are considered in order to display the general linear
response to resonant magnetic perturbations. Finallyuséful to consider the effect of (iii) anomalous/viscous
transport, which is faster than the time scale for resigtiffesion.

The original hypothesis put forward to explain the abilifyrmn-axisymmetric magnetic fields to control
ELMs was that the magnetic field at the edge of the plasma weddme stochastic [9, 21] and the criterion
for achieving stochasticity is commonly used as figure ofitfer the design of perturbation coils. However,
magnetic reconnection is strongly suppressed in a plasatadbates in the perpendicular direction [22] and
strong perpendicular diamagnetic rotation is a basic requent of magnetic confinement at the edge of the H-
mode pedestal. Measured changes to transport are eitijier gtiare observed to have a large impact on particle
transport, not thermal transport. In fact, certain ELM cohéxperiments routinely observe an increase in the
electron temperature gradient in the pedestal regioneralian a decrease, as would be expected in a stochastic
magnetic field [23] and as has been measured in previousierdivértor studies in L-mode [24] . Thus, the
supposition that an ergodic divertor would develop andtlthe pedestal pressure gradient by controlling the edge
electron temperature [25] appears inconsistent with th@ danumber of theoretical estimates and calculations
[7, 26,27, 28, 29] have shown that pedestal transport clsazagenot be explained by this hypothesis. Calculations
for the magnetic field structure show significant modificasiby the response of the plasma to the applied fields
[30, 31, 32, 33, 34, 35].

In this article, physical mechanisms that are capable ofaéxipg changes to particle transport are qualita-
tively considered. An overview of the present experimergallts is given in Sec. 2 and the description of
the plasma equilibrium and particle fluxes are defined in SecAny transport mechanism that increases the
effective diffusivity with ad D that depends on the ratio of the magnetic perturbation feelde background field
0B/ B must exceed the background transport level with diffugiyit, in order to be observed. The requirement
0D > Dy sets a threshold farB/ B that depends on plasma parameters such as collisionatitglzaping that
depend on the transport mechanisms that determine thaigliffes. The structure of the magnetic perturbation
inside the plasma is the first question that must be addreSsgsdion 4 discusses the linear ideal and non-ideal
plasma response to an external perturbation. The plasnhaesist reconnection by attempting to shield the
resonant helicity components of the perturbation. At theestime, the plasma can strongly amplify neighboring
helicities if the perturbation couples well to an internadae. The nature of the transport mechanism is the next
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guestion that must be addressed. Section 5 considers st&stdytransport changes caused by the nonlinear per-
turbation structure: quasilinear, neoclassiaal] stochastitransport. The transport generated by small islands or
a stochastic field is used to estimate the induced ambigbtarB flux [35]. The axisymmetric poloidal neoclas-
sical viscous force will allow relatively large ambipolaasport if quasilinear forces are taken into considenatio
[29, 36, 37, 38]. Section 6 considers possible changes bulemt transport. Damping of the toroidal rotation
profile or of zonal flows may be large enough to affect turbtdemsport. In addition, sufficiently small islands,
on the order of the ion gyroradius in width, can directly eddidrift waves. The final section concludes with a
summary of results.

2 Experimental overview

At present, ELM control using non-axisymmetric magnetictpdations appears to manifest in a number of
separate regimes depending on experimental configuratibiod&kamak facillity. First, Sec. 2.1 describes three
of the observed regimes based on differences betweeniaodigy and geometry: (i) high-collisionalty ELM
mitigation, (ii) low-collisionality ELM suppression andi] ELM pacing. Next, Sec. 2.2 discusses the relevance
of using the Chirikov criterion for magnetic stochasticishich has been advocated as an experimental figure of
merit [21]. Finally, Sec. 2.3 examines a typical low-catiisality ELM-suppressed discharge. It will be seen that
extensions of ideal MHD are necessary for an accurate giscriof the pedestal region. The key conclusions
are: (i) theE' x B velocity is smaller than the diamagnetic velocities andait, the ions and electron rotate in
opposite directions at the edge; (ii) the resistive scasanialler than the ion Larmor radius, which implies that
finite Larmor radius (FLR) effects are important; and (iijoenalous diffusivity and viscosity are much larger
than the resistive diffusion of magnetic flux, which impltbat it is important to include anomalous transport.

2.1 Observed ELM control regimes

(i) High-collisionality ELM mitigation, the first regime found on DIII-D [9, 5, 39, 40], observed teplacement

of large type-I ELMs by much smaller transient events. Theittal mode number = 3 perturbations had little
effect on the plasma profiles, but were found to strongly déonpidal rotation. ASDEX-Upgrade has recently
discovered an ELM control regime that shares certain siitida [10]. For ASDEX-Upgrade, there is a clear
threshold in either collisionality or density that must eeeded in order for type-I ELMSs to disappear. During
mitigation, there is an enhancement in plasma densifyand presumably particle confinement. Both ASDEX-
Upgrade and DIII-D found that the perturbation strength nexseed a threshold in perturbation amplitude on
the last closed flux surface of roughiys /B > 103, but the results are not very sensitive to the mode spectrum.
The edge pressure gradient does not change appreciablawnid still be unstable to type-1 ELMs according to
ideal peeling-ballooning theory [41, 42]. The nonlinedeef of such a perturbations on the evolution of a type-|
ELMs is anticipated to be relatively small; thus, It mightdespected that a new, non-ideal edge instability has
become unstable enough to dominate transport. On DIlI-D;aasymmetric striation of the strike-points was
observed and explained as the bifurcation of the poloidadusgrix into a “homoclinic tangle” [43]. However,
further investigation showed that the structure appearée imore consistent with the formation of an amplified
n = 1 mode that may have also been responsible for damping rotjig.

(ii) Low-collisionality ELM suppression was discovered on DIII-D [5, 6, 7] soon after the high-cadirsality
cases described above. Whenrar= 3 perturbation is activated during H-mode, there is a prorjainge in
turbulent fluctuations [45] and fluxes at the target platd.[A® initial transient phase, on the order the transport
time scaletypically ensues where ELMs become smaller and more frequent befimg cmmpletely eliminated.
During this phase, the plasma density is reduced due to apase in particle transport and,3rfeedback mode,
the temperatures increase, maintaing the H-fadtois technique can also generate smaller, more frequentELM
on JET using, = 2 fields [47] and on MAST using = 3 fields [48], although complete suppression has not
been observedThe results have similar phenomenology in that they reqilirine resonant harmonic of the
perturbation amplitude to exceed a given threshold, rqugh,,—,,/B > 1074, (i) the collisionality to be
lower than a given threshold, exg. < 0.5 for MAST, and (iii) the edgegs to be in a narrow window, typically of
orderAggs ~ 0.1. ELM suppression appears to occur by reducing the edgeyeegsadient and thus bootstrap
current drives for peeling-ballooning modes [6, 49]. Hoaegince the edge density pedestal is reduced and the
steep part of the edge electron temperature gradient is\@ase increase, the maximum pressure gradient is
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4 I. Joseph: ELM control, transport, and magnetic pertudoesti

not necessarily reduced he electron temperature at the top of the pedestal flattietiseduces the width of the
peak gradient regioand the overall effect is to redutiee global drive for instability. The strike point develops
multiple helical striations in particle flux [26, 50]; howe the heat flux deposition pattern remains essentially
axisymmetric [50, 51] which signals a very shallow penéradf the tangle into the pedestal. ELMs remaining
during the incomplete suppression phase, which do pereirtat the pedestal, generate heat flux patterns that
are close to expectations of the tangle structure basecdecapiblied perturbation fields [51].

(iif) ELM pacing has been used to control impurities in Lithium coated disgdsion NSTX [12, 13]. Lithium
coating of the divertor target plates represents anothgerm ELM suppression; however, like ELM-free H-
mode, impurities tend to collect in the core and eventuadigredde performance. ELM pacing using magnetic
perturbations leads to a desirable operating scenarioenihgurities are controlled. In some cases, it can be
shown that the edge temperature gradient increases sufficie cause destabilization of an ELM. In order to
control density during ELM-free H-mode, JFT-2M has alsodusggnetic perturbations to achieve a continu-
ous destabilization of ELMs [11]. In general, large peratitins can cause a back-transition to L-mode that is
qualitatively similar to an ELM event as reported for MAST[#8, 52, 53]. For NSTX, significant divertor heat
and particle flux striations occur that are well matched tdmted connection length profiles [54, 55]. These
predictions can arbitrarily set the depth that field linesgieate into the pedestal by treating the plasma as ideal
within a certaincontrol surface and as a vacuum outside of this surf&at®wvever, the connection length profiles
are found to be relatively insensitive to the location ofitheal-stochasticontrol surface

2.2 The Chirikov criterion for magnetic stochasticity

Much theoretical attention has addressed low collisitm&lM suppressioncase(ii), and less attention has
focused on the other two cases. Both suppression and tinggerquire the pitch-resonant Fourier harmonics
of the normal field perturbation to exceed a threshold. Tly@irement of pitch-resonance motivated the study
of the formation of magnetic islands or stochastic regiohsnagnetic perturbationB,,,, that is resonant at a
rational surfacer,, given implicitly by ¢(rs) = m/n wherem is the poloidal and: is the toroidal harmonic,
generates a magnetic island of (full) width

Rrs 0 Bpm—gn
ns B

1)

w =4

where the global magnetic shear is definedsby dlog ¢/dlogr. (For an expression that is accurate in toroidal
geometry, see [27]). Since the spacing between rationtdces of a given toroidal harmonicds; = 1/nq’ =
rs/ngs, islands will overlap and generate a stochastic layer dme€hirikov parameter

w

5¢?R 6 B—gn
g = = _—
ors

Ts B

)

becomes larger than unity. In fact, a correlation betweelM Euppression and the Chirikov parameter was found
in Ref. [21]. Such studies typically assume that the magmpetiturbations in the plasma are the same as the fields
produced with no plasma at all, the so-called “vacuum agpration.” However, at fixed, the Chirikov criterion

is really a combined measure &B/B and of the edge shear= dlog¢/dlogr. Due to the small window of
Aqos Wwhere ELM suppression actually occurs, it is difficult toépeéndently determine the dependance on shear.
In fact, because the fields within the plasma have not beesunedto date, it is only the threshold in the vacuum
field 6 B,../ B that is actually well-determined.

The stochasticity interpretation met with immediate diffies since: (i) The observed transport effects appear
to contradict analytic estimates and numerical calcutatidii) There is a very small window in edgg; where
suppression is found, rather that #%1) region of Agys where island overlap would occur in the vacuum ap-
proximation. (iii) There are measured dependences on diilbeless parameters such as shaping, collisionality,
and plasmas = 2uop/B?, but the predictions of stochasticity are relatively irsiéive to these parameters. (iv)
Finally, the high-collisionality ELM mitigation experinms do not appear to be sensitive to the pitch-resonance
of the spectrum.

One of the most robust effects appears to be a change inlparaasport. When experiments are run at
fixed global pressureitfeedback), the temperature tends to change a manner thatdwat compensates for the
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Fig. 1 Plasma parameters vs. normalized poloidal flyxfor the low-collisionality ELM suppressed DIII-D discharg
126006. (a) Electron and deuterium ion density; and temperaturé. ;. (b) The perpendicular (toroidal) rotation frequency
(Eq. ??) profiles measured for thgVI+ impurity species (blue dashed) and inferred from radialédralance (Eq. 8)F x B
(green), deuterium (red), and electron (black) frequenciéhe £ x B flow and the electrons rotate in opposite directions
(wwe < 0) over the green shaded regiom5 < 1, < 0.925. The ions and electrons rotate in opposite directions,{ < 0)
over the entire red and green shaded regi8s < 1, .

change in plasma density: when density is reduced, tempesincrease, and vice-versa. This is not consistent
with stochastic electron thermal transport, even wheityfawphisticated models are used, unless the magnetic
field perturbations are strongly suppressed near the seig§?®, 27, 29, 37].The transponnodelsare consistent
with an isolated island or stochastic region that develops abihef the pedestak.g. see [29]. Howevett, is
important to consider other types of transport mechanasnsell

2.3 Example of a low-collisionality ELM-suppressed pedest

Plasma parameters for th&M-suppressed DIlI-Qlischarge #126006, which has been well-studied [29, 30, 31,
32], are shown in Fig. 1(a) over the outer 50% of the normalizédigal flux ¢,,. In the ELM-suppressed phase,
the density drops by roughly a factor of 2 at the edge, whidtéimperatures somewhat increase. The curves are
fits to data that is mapped to inferred location on equililrlux surfaces and were prepared using the pedestal
analysis of Ref. [49]. The electron density (black solid) and temperatuf® (black dashed) are measured via
Thomson scattering while the carbon ion impurity (CVI+) digy) temperaturé’; (red dashed), and velocity are
measured via charge exchange recombination spectrosC&y) (@and used to determine the ion densityred
solid).

Perpendicular (toroidal) rotation frequencies are shawsig. 1(b) with a normalization convention described
in Eq. 11 of Sec. 3.2. Charge excharmgeombinatiorspectroscopy is used to directly measure the carbon
impurity ion perpendicular rotation profile (CIV+ dashed#&). Radial force balance (Eg. 8) is then used to infer
the perpendicular rotation of the x B frameQ g (green), deuteriurf); (red), and electrong. (black), from
the diamagnetic rotation profiles due to the pressure psadfil€ig. 1(a). It is clear thal' x B rotation frequency
is smaller than the diamagnetic rotation frequency in teepstgradient region of the pedestal. It is important
to emphasize that, since the electron temperature gradienich steeper than the ion temperature gradient, the
electrons and ions can rotate in opposite directions atdbe ef the pedest#br ¢,, > 0.85 (theshadedegion
shown in green in Fig. 1(b)YNote that these profiles were not available to Ref. [30], tuedassumptions used
there modified the location of the electron null point/tp ~ 0.6).

Figure 2(a) demonstrates that the low collisionality prmekian extreme range of time scales. The Alfvén
time scalery = R/Va (black dashed) and hydromagnetic time scale= 74/sn (black solid) are of order
10~® — 10~ 7s. The energy confinement time scale inferred by estimatiegdh thermal diffusivityy; from
the ion temperature profiler; = 72 /x; (blue solid) varies from0~2 — 1 s (compare to the curve,,,, for a
diffusivity of 1 m? /s (dashed blue)) and is much shorter than the resistive tigle sg = 7"2#0/77\\ (red dashed)
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6 I. Joseph: ELM control, transport, and magnetic pertudoesti

Time Scales Dimensionless #s

T (s/rad)
5

0.5 0?6 Of7 0:8 0?9 1 0.5 st 0:7 ojg ng 1
(a) " " (b)
Fig. 2 Analysis of times scales corresponding to Fig. 1. (a) Tieles: inverse ion cyclotron frequentyw.;, hydro-
magnetic timery = ¢qR/nsVa, Alfvén time 74 = gqR/nVa, inverse ion rotation frequency/w;, resistive time scale
TR = 7‘2;L0/7]H, and visco-resistive time scatg.. = S}{/?’TR. (b) Dimensionless constants: Lundquist 8's = 74/7r,
Su = Tu/Tr; "Prandtl” #s Pr; = 7ri/Tu, Piym2/s = TR/ Tim2 /s, and FLR parameteRy = p,,/0rec,r the ratio of the
ion sound gyroradius to resistive layer width... ;s = S;;"/*r.

which is on the order of0 s. Figure 2(b) shows that the Lundquist numiSer = 7z /74 (black dashed) and
the hydromagnetic Lundquist numbefs = 7r /7y (black solid) are as large a6® — 10°. This allows one to
estimate that the basic resistive reconnection time scale= 5;12/37-;; (red dashed) is on the order of 10-100
ms. The ion rotation frequency; = wg — w.; IS much faster thanm,.., which implies that reconnection is

strongly suppressed in the single-fluid MHD model [22]. Tharacteristic resistive length scalg.. = 5;11/%
is smaller than the ion gyroradius, which implies that FLRe&ts can play an important role.

3 Definitions of particle transport and equilibrium

In a magnetized plasma, the particle flows are determined &drift expansion of the fluid equations (Sec. 3.1).
The assumption of radial force balance requires a toroiglalierium magnetic field geometry and determines
the drift flows within a magnetic surface. Section 3.2 ddmsgithe geometric conventions (co- and contra-variant
indices) used in this article and presents three equivabguressions for the net radial current. Finally, Sec. 3.3
discusses the constraint of ambipolarity: any perpendiciirrent must generates a parallel return current.

3.1 Fluid equations

Particle and momentum balance for each charged partictéespis given by the fluid equations

on+V-nV=0 3)
omnV +V - (mnVV +p+7)=Zen(E+V x B) +R. 4)

with massm, electron charge, charge stat&Z, densityn, velocity V, pressurep, viscous tenso#r, and the
friction force R. The first twofluid moments determine the evolution of the systemdfasure for the pressure
andviscous tensotr is specified. For a magnetized plasma, the gyrofrequency ZeB/m and gyroradius

p. = Vr/w., whereVy = /T /m is the thermal velocity, set the fundamental scales. Thi ekpansion
employs the small parametér~ w/w. ~ v/w., wherew is a characteristic dynamical frequency ands

a characteristic collisional frequency. Near a rationafaze, microscopic scales that are smaller than the ion
gyroradius can be generated; however, in order to simgiéydiscussion, it is assumed that the smallest spatial
scales of interesty satisfy the ordering,./w ~ O(9). Given this ordering, force balance Eq. 4 yields an
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expression for the flow accurate to ordér

V=Vb
1o+ + ZenB

B ZenB

bxE bxVp <bx(%mnv+v'”_R)>+.... (5)

3.2 Equilibrium fields, flows, and geometry

The solution is expanded order by ordedimia B = B, + 0B +.... Since the perturbations of interest are rather
smallé B/ By ~ 10~*—10~3, they are assumed to arise at oréiBr . Thus, MHD force balanc&, x By = Vpo
must hold to lowest order, given the assumption of quasiabityt This implies that the equilibrium magnetic
field By can be assumed to have toroidal magnetic surfaces due totisaantB, - Vpo(r) = 0, wherer is

a generalized radial coordinate parameterizing the sesfé@ssuming thaB, # 0 andp{, # 0.) In magnetic
coordinates with poloidal angkeand toroidal angl€, this implies that the magnetic field has the representation

Bo = Ve (r) x VO + V¢ x Vipe (r) = B?(0px + q(r)9cx). (6)

The convention for vector indices used in this article igth4 = B, - V6 is a contravariant component and
By = By - dgx is a covariant componeniThe safety factog(r) = dyy/di yields the field line equations
d¢/df = q along unperturbed field linesThe definitions imply thaBB¢ = ¢B? = v,/ J whereX’ = dX/dr
and the Jacobian i§ = J,x - dgx x J¢x. The relatively large parallel thermal and electric cortolitees imply
that the equilibrium temperatu®@® (r), electron density.o(r), and potentiab, () are all flux functions to lowest
order.

The Lorentz force acting on each species (labeled by sythsggridetermines the lowest order perpendicular
flow viaf; = Z;en;V; x B. Radial force balance yields the drift frequency

Qj = Vf — qVTje = fjr/Zjenjwé (7)

and, to lowest order in, the equilibrium drift frequency is

Qj0 = —do/V¢ — Do/ Zjenjo. (8)
Parallel force balance implies that the total force must bependiculaB - f; = 0 and thus,fje/f;c =
—B¢/BY = —q. This leads to three equivalent forms for the radial curoéispecies

Zjel'; = ZienV] = (fj¢cBs — fjeB¢)/ T B* = fic/vt = —fio/vh- )

In this article, we adopt the commonly used convention ofresging the drift frequency as an equivalent
toroidal frequency) = V¢ — ¢V?, e.g. as defined in Eq. 7. In general, for a mode with wavenurkbe
—mV6 + nV¢, the Doppler frequency isy = k- V = nV¢ — mV? and the parallel Doppler frequency is

ww‘ = k”VH = (nq — TTL)(VCB2

tor

+qV®B2,,)/qB>. (10)

pol
The perpendicular Doppler frequency is proportional todh frequency:

wy, L =k V=V —qV")(mBL, +qnB.,)/q¢B>. (11)
and is typically of ordem$2/q. For a resonant mode that satisfies= ¢n, the parallel Doppler frequency

vanishes and the perpendicular Doppler frequency is Elyois).

3.3 The constraint of ambipolarity

Quasineutrality is described by the condition of curremttgaiity: V-J = V- Jyb+V-J, = 0, which requires
parallel and perpendicular current flows to balance. Foh sgecies, the individual components of the particle
flux can be written as the sul=1I'y + I'g + 'y, + I'yo0 + I'x + I'r + ..., corresponding to the consecutive
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8 I. Joseph: ELM control, transport, and magnetic pertudoesti

terms in Eq. 5. The net flux advected through any topologi¢aloidal surface- is defined through the surface
average

I = / " 7dhd¢) A (12)

where the flux surface areais = § |Vr|J7d#d(. Non-axisymmetric magnetic perturbation fields generaté b
intrinsically ambipolal’, and non-intrinsically ambipolar flowss,,,. Ambipolar transport’', =I'y; + ' + I'r

is caused by center of mass parallel floly Vy = E x B/B? flow, and collisional transport. Non-ambipolar
transportl’,, = I'v — I'yy + ', + I'por + ' is caused by relative parallel flow, diamagnetic flow, and the
drifts due to non-inertial and viscous forces. In equiliioni, the electric field will reach the value required for
ambipolar transpott'4 so thatboti'y = I',(E4) andl'y4 = I, (F 4) are ambipolar and the net flux is equal
for electrons and ions. The small electron/ion mass ratigm,; < 1 implies that electrons dominate parallel
conduction processes due to their larger thermal veloacityians dominate perpendicular conduction processes
due to their larger gyroradius. Thus, ambipolarity imptiest, to lowest order,

(Tna) 2 (Tre+Tpe) ~Zi(Tpi +Tpori + i) (13)

4 Plasma response

A plasma can react to an external magnetic perturbation iraaner that both suppresses and amplifies the
perturbation simultaneously. Three complex “transmis&ators” are sufficient to parameterize the effect of the
ideal and non-ideal physics at play. These transmissidoraare required to estimate quasilinear transport in
Sec. 5. Ideal MHD determines many aspects of the plasmanssior perturbations that travel slowly compared
to the Alfvén speed. The linear ideal MHD response, deedrib Sec. 4.1, allows one to define two solutions
far from a rational surface: a small solution that can predoo tearing and a large solution that may. The
ratio of the two solutions is determined by the physics inlgyer, which may require non-ideal effects for an
accurate description. In general, the layer physics carob®bicated, but the effect can be parameterized with
two complex parameters defined in Sec. 4.1: the relativeriatéransmission facta$;,,;, which quantifies the
screening by the current channel, and the relative trassomigactor for reconnectioS,..., which quantifies the
screening within the current channel.

The absolute transmission factors are defined as the ratiteeba the perturbation in the plasma and the
vacuum field perturbation. The external transmission fagig, is completely determined by the linear ideal
MHD response, which typically leads to an amplification of thast stable modes of the system, as described
in Sec. 4.2. This so-called “resonant field amplificatiordde to an external transmission facfQy, that can
be larger than unity and amplifies the tearing that would oddhe shielding currents were to relax. Because
the absolute internal transmission fact: = Sin:7e.: and the absolute reconnection transmission factor
Tree = SrecTine are both proportional t@..,.;, resonant field amplification (RFA) always plays an impartate
in determining the ELM control threshold, regardless of dletails of the processes involved. This leads to the
conclusion that there is a window in plasrigactually in the local gradient) over which ELM suppression
should occur.

The linear two-fluid drift-MHD plasma response, discusse®éc. 4.3, generates resonances in the relative
transmissiors;,,; at theE x B frequency and the ion and electron diamagnetic frequencigs The addition
of diffusion in the so-called semi-collisional regimesdsrio smooth thé? x B and ion resonances, but cannot
affect the electron resonance, which is determined by thallphOhm’s law. Thus, an island can form most
easily near the location where the electron impedanceynearlishes, which is near the location where the
relative perpendicular electron rotatiop = w — w,. vanishes.

4.1 Ideal MHD response near a rational surface

Plasma physics is well-described by ideal MHD sufficiendliyffom a rational surface, where the perturbation
wavenumbek matches the “pitch” of the equilibrium magnetic fieR},. On this surface, the safety factor is
a rational numbeg(r;) = m/n and the pitch-resonant component of the perturbed flux, lwhatisfiest) o

m — gn = 0 can potentially cause an magnetic island to form. Howeveidaal conductor must conserve the
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evolution of magnetic flux through any closed loop that mownvitks the conductor. Reconnection is forbidden in
an ideal conductor because a topological rearrangemeragietic field lines requires an essential redistribution
of magnetic flux. In a plasma, which is a nearly ideal conduyetaarrow current layer arises in the vicinity of
the rational surface to shield the reconnected flux. Plagtaion governs the nonlinear and/or dissipative
processes that determine the structure of the surfacentUayer. Because reconnection generically breaks
magnetic surfaces and causes a loss of plasma confinememtatieeessentially two plasma states: a state of
good confinement where temperature is high and resistivitgw and little reconnection is possible and a state
of poor confinement where temperature is low and resistigitygh and reconnection can proceed freely.

The physics near the rational surface simplifies in the lohizero pressure and large aspect-ratio slab geom-
etry. Assume that there is symmetry, so that the pertunhagpends only op = 6 — (n/m and is independent
of = = ¢. The helical flux is defined ag = . = ¢ — Yon/m ~ Boz?/2Ls + d(z) exp (imy). The
flute-reduced MHD equations [67] evolve the magnetic fBle- By (z + z x V) and guiding-center velocity
V =z x V¢/By. The equations are written using MHD normalization for thaeiables defined by an arbitrary
radial scale lengthy, densityn, and reference Alfvén veIocnyA0 = BOZ / onom;, whereuo is the magnetic
permeab|llty The normalized variables ae= B/ By, ) = ¥/ Boro, b = ¢/BoroVao, V= V/Vao and
t = Vaot/ro. Dropping the hats for ease of notation, the Ohm’s law anceeticontinuity (vorticity) equations
become

oY = —[¢,¢] (14)
wU = —[o, U] = [¢, J] (15)
U=V -V, ?V¢ (16)

J =V 17)
[A,B]=z-VAxVB. (18)

Let w;, be the perturbation frequency in the lab frame angd = &,V be theE x B frequency due to the
equilibrium electric potentiady(r). Far from the rational surface, the dispersion relatioaved] shear Alfvén
wavesw® = (wp —wg)® = (k;Va)?. The system also reduces the fast compressional Alfvére u@the
two solutions of the vacuum dispersion relatidrri = 0. The non-singular “vacuum solutionp,q.(r) o

r™ exp (imy), shown as the dashed green curve in Fig. 3, is the solutibwthed be generated by a perturbation
on the boundary,,..(a) if there were no plasma. Magnetic shear causes the two Alivénches to mode-couple
in the vicinity of the rational surface when # 0. In the region exterior to the Alfvén resonances, the piyysi
asymptotically limits to the decoupled case and allows orgefine the two canonical solutions that are required
for the rest of the analysis. For non-ideal models, the widtthe response layev is set by physics other than
the Alfvén resonances, 30 will be considered to be an independent parameter in thewiallg. At the end of
this subsection, the linear ideal MHD response in the maugsling region between Alfvén resonances will be
described in detail.

Even in the general case where the interchange and kinkvitisés are retained, two linearly independent
ideal solutions can be defined in the exterior region. (i) free-boundarexterior solution.,; (blue, dotted
curve), also known as the small solution, is defined so thabitluces no tearing: it is non-zero on the boundary
r = a and vanishes at the rational surface- r,. In a symmetric slab or cylinder, there is no coupling betwee
Fourier harmonics and@..:(r < rs) = 0. To normalize this solution to the vacuum solution, det,;(a) =
Uyac(a). (ii) The fixed-boundarynterior solution;,; (red, dotted curve), also known as the large solution, is
defined to be produced by a current on the rational surfaceanishes on the boundaty,,;(«) = 0 and is
non-vanishing at the rational surface. Thus, this solut@m potentially produce tearing of the flux surfaces. As
shown in Fig. 3, both solutions have a cusp at the rationfseardetermined by the jump in the radial derivative

[ = lim o' (rs +x) — ' (rs — ). (19)
r—+tw
The cusp represents a surface current on the rational suifacmormalize the interior solution, let the cusp in the
solutions be equal and opposite to that of the externalisol{i},,,](rs) = —[¢..](rs). The general solution

(solid black curve) in the exterior region defined |by- rs| > w, wherew is the width of the current layer can
be expressed as the linear combination

ZZJ(T) = \I/intdjint (T) + \I/ezt'l/)ezt (T) (20)
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The relative transmission factor is defined to&e; = ;1 /Y., FoOr example, if;,; < Sy = 0, then
the solution is clearly ideal. On the other handSjf,;, = 1, so thatV,,;, = V.., then the surface current
apparently relaxes and the solution is proportional tothecth “relaxed” solution), ¢4 (1) = Yewt (1) +1int (1)
(solid purple curve). In this case, the ratio of the interfhat to the vacuum flux ..t = Yint(7s)/Vvac(rs),
and is typically amplified by toroidal effects as discussethie next section. Note, however, that because the
exterior/small solution is most easily extracted from agaidVIHD code, the external transmission factor is often
estimated via the approximatioi,; ~ —[v...(rs)]/2¢] ..(rs). While 7., is determined by the properties of
the ideal MHD solution in the exterior region alone, the intd transmission factof;,,; = S;n: Test IS determined
by the physics near the rational surface.

The ideal solution requires a net surface current to flow trearational surface that can be measured by the
cusp in the solution

A= [¢']/¢ = lim / :m poJe” M B | Adp. (21)
Given the normalizations above, the traditional tearia@pility parameter i\, , = —A’ . = [¢!,.,]/Pint (With
instability if A}, < 0). The equation

A= Almt(l — Wert/Vint) (22)
can be restated as a complex equation for the relative tiasm of the internal solution

Sine = 1/(1 = A'/A,). (23)

The radial structure of the current near the rational serfacetermined by the physics active in the inner layer.
Each Fourier harmonic of in Eq. 21 must match the asymptotic boundary condition datezd by A’ , in
Eq. 22. Since plasma rotation at frequencyrelative to the rest frame of the perturbation) tends tqsegses
reconnection, typicallyl /|Sint| < 1 + (w/wyee)® Wherew,... is a threshold frequency for reconnection.

Although the ideal solution);,,; has tearing parity, it may or may not signify actual reconioecdepending
on the physics within the current channel near the ratiomdhse. For the so-called “constant-psi” regimes, the
solution fory> does not vary much within the interior layer and-, ) ~ ¥;,,;. However, nearly-ideal regimes are
not “constant psi,” which implies that the current layer babstructure. For these cases, the actual reconnected
flux ¥ (rs) = U,eethint (rs) is much smaller than the asymptotic value at distancesnénge the layer width

’L/J(TS) = Th_r}gu(z/](rs + ’f‘) + w(rs - T))/2 = \Ilintwint(rs)- (24)

For nearly ideal regimes, the relative transmission foor@ectionS,... = ¥(rs) /1 = ¥,../¥;,; and the total
transmission for reconnectiof.. = SyecTint = SrecSint Teat are typically rather small. The actual island width
of the island that would be generatedis.. = 4+/|¢¥(7s)Ls/Bo| = Wyac\/| Trec|-

The linear ideal MHD response [56] to an external pertudmais the canonical example of a “non-constant
psi” regime [22]. Assume that the background helical fluxgesses magnetic shear so that By = 2% /2L and

ky = k"‘x = kyx /L. The ideal MHD constraink; = 0 implies thatv¢ = dywL,/ck,x, where the relative fre-

qguency isv = wr,—wg. For athin perturbatiofi, > k,, the dispersion relation i, [w2 — (VAk”)ﬂ 0,00 = 0.
Thus, the compressional wave couples to the shear Alfvér atthe two locationsz 4 wherer 4, = w/k"‘ Vi =

w/wak, andws = V4/Ls. For example, for drift frequencies.,, = k,p.,Vs/ Ly, where the ion sound speed
is Vs = \/(T. +T;)/m; and1/L,, = dlogn/dx, the resonance spacing ~ p.,v/3Ls/L, is typically on
the order of the ion sound gyroradigs, = V;/w.;. The linearly increasing solution.,; = 2 represents the
solution to an odd displacement of the flux surfaces at laigtantces, and, thus, is equivalent to the exterior so-
lution. The interior solution is a constant,,; = 1, which represents the small solution in the slab. The respon
to an even displacement of the flux surfaces at large distahge= Re (2iz/7) tanh™ " (x/2.4) exp (ikyy) is
singular at the resonanceg. As expected from ideal MHD, there is no reconnection at@ll. = 0, because,
asx — 0, the flux vanishes ag ~ z?. The interior solution fofz| > z 4 is actually phase-shifted by/2 from
the exterior solution. The asymptotic behaviornas+ oo is §1) — |z|cos (kyy) + 2.4 /7 sin (kyy). With the
resultsA’ = in /x4 andA}, , = —AL,, = —2k,, the transmission factor becom8s,, = 1/(1 + inw4/2w).
Thus, for the linear ideal cass;,,; < 1 for slow rotationv < w4, but approaches 1 in the limit of large rotation
w > wy, even thougts,.. = 0.
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Fig. 3 (a) Magnetic fluxy functions in the ideal external region — | > w. The general solutiogh(r) (solid black) is a
linear combination of the ideal exterigt..: (dotted blue) and ideal interiaf;,,; (dotted red) solutions. In this case, the fully
relaxed solution),.;q. (solid purple) is less stable than the vacuum solutior. becausd7..:| > 1. However, inner layer
physics keeps the internal transmission fadfpr, < 1. (b) The magnetic flux) (solid) and electric potentiat (dashed) in
the inner regionr — r| < w for a “non-constant) regime has multiple layers. The ideal inertial regime digplAlfvén
resonances at—rs = =+ 4, but the flux vanishes at so there is no reconnection.. = 0. The relative transmission factor
Sint reduces the interior component and generates a phase detd.0Re (1) o ezt (blue) implies thalm (¢) o< 1int
(red).

4.2 Resonant amplification of the exterior solution

Any external perturbation that is resonant with an ideal Mktibmal mode will be amplified within the plasma
due to “resonant field amplification” (RFA) [57]. In axisymirie toroidal geometry, the poloidal harmonics of
the ideal MHD eigenfunctions couple and the ideal solutibagelop a cusp, as shown in Fig. 3(a), in the vicinity
of all rational surfaces for a givem. In addition, finite current and pressure gradients alternfode structure
significantly from the vacuum case. For an ideal plasma, ldsnpa displacemer§t = 6x(v, 6, ¢) can be taken
to represent the plasma stateFifepresents the linearized MHD force operator, the linespaoase of a plasma
can formally be decomposed into normal modi‘@g = —w}p€, where herep = m;n;. The response to any
external sourc&(z)e !, determined by the solution {&€ — ¢ = pS(z)e~ !, can be formally represented
as¢ = Y, (€l -S)e~wig, /(w? — w?) where, here(X) = [ X pd®z denotes the inner product over the volume.
Since the external perturbation is typically much slowamntthe Alfvén frequency,y < wy ~ wa, if the least
stable, i.e. lowest frequency, mode approaches margaailist w2 — 0, a very large response will be elicited
for a relatively small perturbatiofi ~ <§$ -S)e~ g, /(wi — w?). For example, the least stable ideal mode is
often an external kink mode (stablized by an external watiich becomes unstable whép = 8aB? /1,0, Bior
exceeds the stability limi8.,.;; ~ O(1). Thus, amplification scales 85, « 1/(1 — 8,./Bcrit). Near marginal
stability, the singular behavior of the transmission faetdl be resolved by non-ideal and/or nonlinear effects.

Observation of RFA has been confirmed experimentally inistudf resistive wall modes on both DIII-D
[58] and JET [59]. The first detailed investigations were mading the CAS3D code to predict the size of
islands caused by error fields in W7X [60, 61]. Ideal lineapanse calculations also give information about the
possibility of stochasticity because, if nonlinear eféegte small, the island size that would be generated if there
were no plasma screening can be determined from the magrafuke shielding current near the rational surface.
The first investigations for tokamaks were made using theClBade [62], based on the DCON eigenvalue code
[63], to determine the non-axisymmetric deformation ofamlak equilibria due to magnetic perturbations. It
was found that the ideal MHD response for plasmas of intevidisbften substantially rearrange the applied field
spectrum from the vacuum field. Perturbation fields that m#ie eigenmodes are strongly amplified and such
harmonics need to be targeted for error field control [644 fom ELM control, as well. The nonlinear plasma
response has also been calculated using the initial valu® Métles NIMROD [31], M3D [32] and using the
MARS-F code [48, 52, 65, 66]. For resistive MHD models, sigfitly strong plasma rotation should reproduce
the ideal limit. However, as shown below, drift-MHD modets aecessary to accurately describe the non-ideal
physics in the H-mode pedestal.
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12 I. Joseph: ELM control, transport, and magnetic pertudoesti

RFA represents a resonance between the applied field andietheMHD eigenmodes = w) and should not
be confused by the “pitch”-resonance condition for recatioa k| = 0. However, amplification of the internal
flux ;,,, relative to the applied field,,. also amplifies botl ., andW¥,.... Thus, a critical threshold to achieve
ELM control that depends on the size of the perturbation énplasma, whether it b&...;, ¥;,.;, or ¥,..., also
implies that there must be a critical threshold in extermaplfication 7.,;. A corollary implies that there is a
critical threshold in normalized pressure gradient- ..., in order to achieve sufficient amplification for
ELM control. If & becomes too large (and the pedestal is not entirely in thenskstable region), then the
edge pressure will again violate the ELM stability criteriozr, ;. Thus, ELM control will typically only be
achievable within the windowtgr s > a > Qeoniror. Consideration of RFA is important for achievement of
ELM control and for the design of the perturbation spectrenduse there is an upper limit on the perturbation
amplitude that can be applied due to constraints imposeld nptengineering and plasma physics. Above a
critical perturbation strength, sufficient viscous dangpwill be generated to lock the plasma rotation to the
perturbation frequency [22] and can cause termination efdischarge. Recent experiments on MAST [48]
demonstrate that sculpting the ideal MHD response specimuonder to produce a large amplification at the
plasma edge generates an internal field structure thataffezedge without locking core rotation. The opposite
condition, amplification near the more dangerous low-ordéonal surfacespften caused a back-transition to
L-mode [48, 52, 53]. Hence, altering the edgprofile and plasma shaping can strongly impact the ampiifica
for a given perturbation, and thus, impact the ability toiaeh ELM control with a given perturbation spectrum.
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Fig. 4 The transmission factor for linear solutions to the drifd® equations, scaled bs}{/:’ for m = 1. Drift frequencies
are assumed to be rather slaw;7,.c = —w+.Trec = 1 to emphasize the resonances. (a) Amplitude and (b) imagjpaat
for 2 fluid-MHD regimes: resistive-inertial (RI, solid blyevisco-inertial (VI, dashed red), and visco-resistiveR(\otted
black) cases. (c) Amplitude and (d) imaginary part for FLgmeesp,, = 5pr..: non-diffusive semi-colllisional regime (SC,
solid blue,Pp = P,, = 0); diffusive semi-collisional (SC-Diff, dashed re#®p = P, = 100), compared to visco-resistive
(VR, dotted black).
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4.3 Non-ideal plasma response

The non-ideal response of the plasma near the rationaksudaetermined by nonlinearity, dissipative processes
and finite Larmor radius (FLR) effects, and, in turn, deterasi the deviation of botfi;,; and7,... from the
linear ideal solution. Depending on the character of theidant impedance mechanism, an island may or may
not be allowed to form.The theory and observation of magnetic islands was receenigwed in [68]. The
asymptotidinearanalysis was reviewed for single-fluid MHD in [22] and exteddo isothermal two-fluid drift-
MHD in [69]. Ref. [70] extended the drift theory to includeaskical diffusion, and arbitrary particle diffusivity

is studied in [35]. The extension of the analysis to includedaiassical flow damping and the bootstrap current
was performedin [71, 72, 73].

If an island does form, the fast parallel transport tendsatbefh the electron temperature gradient across the
island. Thus, isothermal models can be considered with $astiication. Many authors have studied the 4-field
reduced drift-MHD single-helicity model [67, 76] which @emines the fieldB = (B,z + z x Vi) andV =
V,z+ B x V¢. Within the “flute-reduced” ordering, curvature changesuwat second ordéi(b- Vb) ~ O(5?),
which implies that B, /B = —uodp/B? = —[35p/2po where = 2uop/B2. To describe the model, introduce
dissipative terms: anomalous diffusivityo, kinematic viscosity:, and resistive diffusivity) /.o and define the
additional normalizations?” = T//eBroVao, p; = 21}, V = V./Vao, D = Do/Vaoro, fi = p/Vaoro, and
i) = 1)/ 1o Vaoro. After dropping the hats for ease of notation, the normalizguations become

oh = —[¢p — T, logn, ] +nJ (25)
QU ==V - [¢ + Tylogn, Vi>Ve] — [, J] + V- uV (U + V2Tin) (26)
Oyn = —[¢,n] + [, nV + p%J] + V- DVn 27)
onV = —[¢,nV] + [¢, Bn]. (28)

Here, the gyroviscous cancellation given by Ref. [67] ressinl the first (advective) term on the RHS of Eq. 26.
Matching to the ideal external solution as— oo impliesy — (Ag + A1ky|z|)e*sY, ¢ — YwLs/ck,z and
n — ows/w,V — 0.

A comparison of the relevant time scales, shown in Fig. 2¢a)ecessary to distinguish the importance of the
various terms in these equations. It is common to define tmeltjuist # (or magnetic Reynolds #) as the ratio
between the Alfvén time, = ¢R/nVao and the resistive time;z = T?uo/m\ so thatS4 = 7r/7a. In fact, the
actual dimensionless parameter that appears in the thetitg hydrodynamic time associated with the magnetic
shearry = Ls/nVy4o. As can be seen in Fig. 2(b), the physically relevant de@initf the Lundquist number
Sy = Tr/7H (solid black curve) is typically a bit larger thefy (dashed black curve), becauke = ¢R/s is
typically smaller tham R at the edge, where the shear is large. The “Prandtl #'s” dieatbas the ratio between
the anomalous diffusivities and the resistive diffusiviy, = juu0/n) andPp = Dopuo/n;. When the anomalous
viscosity is estimated from the energy confinement timePifaadtl # is of order 10-100, implying that the effect
of anomalous diffusivity is relatively important. For expla, Fig 2(a) and (b) compares the time scales and
Prandtl #'s estimated from tHE profile (solid blue line) to that defined using a constant galfilm? /s (dashed

blue line). Finally, the ratio op,., to the visco-resistive layer width,... = 851/31"5 describes the importance
of FLR terms. As can be seen in Fig. 2(b), FLR terms are sigmnifibecausé&y = p../prec ~ 5 — 10 (solid
red). This conclusion holds even if computed usthg(dashed red) instead 6%;. Since both? > 1 andR > 1

for this discharge, the so-called “semi-collisional” negis are of greatest relevance (if anomalous transport is
included).

Analytic dispersion relations for the linear three field rabdbtained by neglecting the sound wave coupling
and setting” — 0 have been studied in [69, 70, 35]. Fig. 4(a) shows the r&atiternal (yellow) and recon-
nected (magenta) transmission factors, and the total nemed transmission factor (blue) for the visco-inertial
regime. Fig. 4(b) shows the reconnected flux for the invi¢éid= ;. = 0) regime (blue), for the visco-inertial
regime (magenta) and the visco-resistive regime (yellowyures 4(c) and (d) compare results for the semi-
collisional inviscid case (blue), the diffusive semi-csithnal case (magenta) and the visco-resistive case Wgello
assumingPp = P, = 100.

Dissipation generally smooths both the ion and gyro-cer®onance. However, the electron resonance is
robust to these effects precisely because this is the pdieterthe electron impedance for driving parallel current
is minimized and nearly vanishes. In fact, 8 out of 10 regifadsnon-inertial regimes) identified in Ref. [70]
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14 I. Joseph: ELM control, transport, and magnetic pertudoesti

haveA’s that depend more strongly an = w — w,. than onw; = w — w.; (see Table | of Ref. [70] but note
the different notation used there). The explanation isesa$d understand after transforming the parallel Ohm’s
law to Fourier space. The helical flux is determined {da— w.. + ink?)y, = ... which yields the largest
result when the perpendicular electron frequengyanishes. In a low-collisionality plasma, the resistameal(
part) is much smaller than the reactance (imaginary pat®ssiw.| < nk2. Both linear [30] and nonlinear
[34] simulations have confirmed the ability of islands tonfonear this location. Note, however, that Refs.
[30, 83] have determined a kinetic correction to the electtimmagnetic frequency that is proportional to the
electron temperature gradient. Fig. 4 clearly shows thaL titentz force, proportional to the transmission factor
Im S;,.;, changes sign when,. < w < w.;. The force always acts to brake electrons, but this will act t
increase ion rotation when electrons and ions rotate in sipgpdirections relative to the perturbation; i.e. when
wew; = (W — wae ) (w — wsi) < 0.

5 Steady-state transport mechanisms

The effect of small perturbations on transport can be estichftom the second-order nonlinear, i.e. quasilinear,
response. As shown in Sec. 5.1, the quasilinear convectawsport due to magnetic perturbations, the so-
called “magnetic flutter flux” (Egs. 31 and 32), is proport@bto the quasilinear Lorentz force. Both the force
and the flux depend off.,; and can change direction because they are proportiorah8,,;. In the core,
where electrons and ions rotate in the same direction, tfoe facts to decelerate the flow and the flux acts to
increase particle confinement. In the pedestal, whererelectind ions rotate in the opposite direction, the force
acts to decelerate the electrons and accelerate the iortbaffidx acts decrease the particle confinement. The
predictions are qualitatively similar to observationshie tas€ii) low-collisionality ELM suppression regime
discussed in Sec. 2. The effect generates a jump in the lequiti density profile that becomes significant at a
threshold in field amplitude determined by the backgrouffdsivity (Eq. 35). The quasilinear structure of the
layer is completed in Sec. 5.2 after consideration of ionais forces.

Transport mechanisms that incorporate physics beyondrtfieMHD model of Sec. 4 are considered next.
The ion viscous force, which plays a key role in particle $fzort, is typically dominated by neoclassical poloidal
flow damping. As shown in Sec. 5.2, this can potentially yjeddticle transport that ig/m;/m. times larger
than the axisymmetric case if there is a non-ambipolar eladtansport mechanism that is simultaneously ac-
tive. A stochastic magnetic field, determined by the recoteteflux7,.., naturally provides non-ambipolar
electron transport. While stochasticity typically enhemelectron transport, thermal transport will not dominate
particle transport until a threshold in perturbation stytbris exceeded (Eqg. 50). Finally, results of calculations
of stochastic transport for low-collisionality ELM-sugssion cases are discussed in detail.

5.1 Quasilinear transport

Transport along flux surfaces can flatten the gradients opésature and density radially across an isolated
island. If the island widthv approaches the ion gyroradigs, the electrons will respond much more strongly
to the magnetic structure than the ions. As the island wislinéreased, the electron temperature will flatten
first, then the density and ion temperature gradients wilb¥o The critical width for each of these stages is
determined by the condition for in-surface transport to di@te perpendicular transport across surfaces [78, 79].
The parallel electron particle transport channel is ofefenmred to as “magnetic flutter fluxThis flux was first
shown to be capable of inverting the density gradient acaossland in the computations of Refs. [81, 82]
Since only electrons participate in the parallel currer®ton. /m;), there is an equivalent ion flux due to drifts
generated by non-ambipolar forces such as inertia, viggasid ion-neutral collisionsAs discussed in Sec. 3,
this component is equivalent 6 x B transport across flux surfaces.

The quasilinear flux can be derived in a manner that is sirtoléive derivation of the quasilinear Lorentz force
integrated over the layer. The Lorentz force is determinettie Maxwell stress tens@xy; = (BB—B?/2) /o
viaV - Tgy = J x B. Just as the total Lorentz force can be expresseflhs Bd3z = $Teum - d?a, the
flux-surface averaged torque density can be expressed as

<fEM,0> = <J x B - 69X> = <6,‘T§M,9 — TE'I\J : V89X>. (29)
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Asymptotic matching to the ideal exterior region implieattthe total current integrated across the layer must be
parallel to the equilibrium field. Thus, as derived in Secb&h the jump in the tangential fie[®y] = —q[B¢]
and the force across the laygtir,0 = —qfra,c Must be perpendicular to the equilibrium field. The result is

<fEM,0> - <8T[B«9BT/,LLO]> - 6(T - TS)ImSint |7;mthac|2 //LO (30)
whereB2,, = B, ,..B""*. To derive this result, note thg8"” By| = [Re (B, By .cxt)] = Bl BrindIm Sipy =
B e Brvac| Text | Im Sint. The second term on the RHS of Eq. 29 does not yield a coniwibbas singular as

the first.

The quasilinear particle flux can be evaluated in two diffiémeaysel’;;, = <J||b . Vr) = —(J.-Vr). The
two forms are a consequence of quasineutrality, which espihat the electron and ion fluxes are equal and
opposite, as discussed in Sec. 3.3. The result is

. (Bc0r[By] — B0, [Bc])B" ByB"
( ql> = < TP =0y et =0(r —rs)Dgne (32)
Dql =1Im Sint |7—emthac|2 /MOene- (32)

Equation 31 demonstrates the equivalence of both a direspatation of the parallel current and of substitu-
tion of the poloidal Lorentz force into Eq. 9. The charadici “diffusivity” can also be written ad, =
§B2Im S;pe /poene = (2p..Vs/B) x (0B/B)?Im S;,,; Where = 2uop/ B2. Investigation of the layer solution
shows that the flow is actually convective with the charastierradial flowV,; = D,;/w, wherew is the width
of the current channel. The particle flux critically depeffitisEg. 32) on the imaginary part of the relative
transmission factolm S;,,¢. As discussed in Sec. 3.3, the ion flux that determiigsis determined by viscous
and non-inertial forces. In the core, the MHD assumptiont tha £/ x B frequency is much larger than the
diamagnetic frequencies is valid. In this case, the forte tcdecelerate both electrons and ions, and there is
an inward particle flux. However, in the pedestal, the iond @lectrons rotate in opposite directions over the
entire red and green shaded region of Fig. 1(b). In this ¢hedprce decelerates electrons, accelerates ions, and
generates an outward particle flux. These relations are suized in Fig. 5.

Linear and nonlinear island theory produces arich varietggimes and a variety of calculationslof S+
Im A’ have been performed in the literature, usually in the steddRutherford” regime [69, 74, 75, 76, 77, 79,
80]. Since the torque is proportional Im S;,,; o« Im A’ this directly leads to predictions of the flux. For a
combination of neoclassical and anomalous viscous fotbestorque scales with various combinations of the
momentum damping rate [71, 72] and, hence, so does the flue tNat theF x B flux across the unperturbed
flux surfaces must be determined by integration over thetatliucture in the inner layer. It cannot be directly
evaluated by the asymptotic form of the solution because dandn. each have the asymptotic scaling) /.
This yields a large particle source in the inner layer andrasvang flux~ 1/x2 far from the layer. It has been
found to be small [35] unless the island size approachesytweagius in size, as discussed in Sec. 6.

In equilibrium, both the force and the flux must be balancedther transport mechanisms. Total radial force
balance leads t{JBQ/2u0 + p] = 0, so that there must also be a singular poloidal current

poJy/B = 0, lpopl/ B* = 6(r — 1) B[ne] /ne. (33)
Particle continuity, Eq. 3, implies that if the magnetic tutflux is balanced by an anomalous particle diffusion
V" = —Dyn/, then integrating across the layer leads to a jump in deasityss the layer:

[ne]/ne = Dgi/Dy. (34)

For a series of small jumps acra&srational surfaces, the effect will become important one®@,; ~ Dy. This
yields a threshold

|7-emt|2(§Bvac/B)2 > /BDO/Npc5VS|ImS7/nt| (35)

Assumings ~ 1073, p.,Vs ~ 103m?/s, and setting the transmission to order 1 would reqéisg B > 10~*
to exceed a background diffusivity 6f1 m?/s over 10 surfaces. However, given the expected scaling of the

transmission factor, the threshold would‘ﬁgi/2 ~ S}I/G ~ 30 times larger§ Byq./B > 3 x 1072,
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Sen <0 Sew >0
> X

[o,v] <0 [o.v.]>0

- Fig. 5 Jump conditions for the case of anomalous toroidal viscos-
ity. (a) In the core, where electrons and ions rotate in tineesdi-
rection (unshaded region of Fig. 1(b)), the force acts tadkzoth

[n ] x[9] <0 [n ] «[9]>0 species and generates an improvement in particle confirteign

‘ ‘ In the pedestal, where electrons and ions rotate in oppdsie-
(a) (b) tions (shaded region of Fig. 1(b)), the force acts to braketedns,

generating a decrease in particle confinement.

5.2 Neoclassical transport

Neoclassical viscous transport, which is driven by theatamn of | B| within a flux surface, can compete with
the low level of anomalous viscous transport in the H-modgeed his is especially true for the low collisionality
ELM suppression regime. Non-axisymmetric variations daeady drive transport through neoclassical toroidal
viscosity (NTV) [84]. Perhaps surprisingly, the axisymneneoclassical poloidal viscosity (NPV) can also
generate transport in reaction to the additional quasitifierces and fluxes [36, 37]. Neoclassical theory predicts
that the flux surface averaged components of the viscous fman be expressed as a viscous drag against the
stationary field strength variations [84]

<f7r,a> = —(0ax -V m) = —mnfin. Z ko ((k - V>Ik [6B/B] + (k- 2Q/5p>£k[§B/B]) (36)
k

whereQ is the heat fluxu.,. is the kinematic viscosity, and the wave-veckoe= MV — NV( refers to the
Fourier harmonic o6 B. The form of the functionalg, [0 B/B] and L, [0 B/ B] depend on the collisionality
regime. For small perturbations, they scale(cﬁBH/B)Q [84, 85], while for a sufficiently large island of width
w o< /6B /B they scale aé B / B [86, 87].

Axisymmetric poloidal variations of the magnetic field sig¢h yield a neoclassical poloidal viscous force
(NPV). The usual analysis for a single ion species in largmeat ratio geometry focuses on the parallel compo-
nent of this force because there are no other significantlebi@rces: inertia can be neglected, the ion viscous
force is larger than the electron viscous force\iyn; /m., and friction forces vanish when summed over species.
Thus, the parallel viscous ion stress must nearly vanistdardo satisfy parallel momentum balance and the neo-
classical poloidal flow is determined by the neoclassic&igal heat fluxV,?, ~ —2k!Q° . /5p; = —k;T!/ Zeq.

In a large aspect-ratio tokamak;, = 1.7 in the collisional regime, 0.5 in the plateau regime and #irlthe
banana regime. Using radial force balance, the poloidal flet@rmines the radial electric field in the frame of
reference that rotates with the plasma in the toroidal dac

& =—¢' =V, =p}/Zien; — qV . (37)
Neoclassical equilibrium is achieved rapidly and foréggo achieve the value

Due to axisymmetry, the toroidal flow ¢ is nearly conserved and, hence, béth and ¢ evolve on a much
slower timescale. Thus, the ion parallel viscous force dedion particle fluxi, ; are both suppressed by a

factory/m./m;, i.e. to the electron transport level [88, 89].

Additional forces due to inertia, anomalous viscosity, @&mneutral friction can significantly modify the
result of the usual neoclassical analysis. Parallel foncedify the equilibrium poloidal flow and nonambipo-
lar perpendicular forces modify the radial electric corteiity [90, 91]. If the additional forces are primarily
toroidal, then the net ion flux can potentially achieve thex<imaim valuel'” .. However, the magnitude of the
ion flux, and therefore the net parallel force, is still coasted by ambipolarity, i.e. perpendicular force balance,
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and would be forced to vanish if there were no other nonantdigcansport mechanisms. The addition of a
nonambipolar electron transport mechanism can potengalhance the neoclassical particle flux by a factor up
to \/m;/me; i.e. to the ion transport level. Using Egs. 9 and 36, the lessical radial fluxes are

() = minivne,i(V,o, — Ve)/ZzEQZZJé = DpeiniZie (BEy — Enci) |Ti (39)
(Qr.i) = (T7.)Ti = Xne,ni T} (40)

wherev,,. ; ~ pi;/r? is the poloidal flow damping ratd),,. ; = v,..ip% is the ion diffusivity, andy,,..; is the
thermal conductivity. In the Pfirsch-Schliter regime ; ~ ¢*v;;, in the plateau regime,.; ~ ¢Vr;/R, and in
the banana regimg,. ; ~ e~3/2¢%v;; wherew;; is the ion-ion collision frequency [88]. If theormalizedforce
becomes as large &e(E, — E,..)/T; ~ O(1/Ly), then the effective diffusivityD,,.; ~ 0.05 — 0.5 m?/s is
large enough to play a significant role in transport.

For a simple non-axisymmetric case, consider the quaailitnansport generated by an isolated magnetic per-
turbation discussed in the previous section. A common ag8am[73, 77] is that the Lorentz force is balanced
by neoclassical poloidal flow dampirfg, , = —m;n;vnc:(Vy — Ve, ) @nd that parallel force balance is achieved
through anomalous toroidal viscosify . = m;n;uV?V,. For the isothermal modeV,,., o« T/ = 0 and the
force within the layer generates a singular poloidal flow

Vy/Vri = femy/minivne,iViri = 6(r — 15)poiDgt/ Dne,i- (41)

Total parallel force balance implies that the parallel comgnt of the sum of the viscous forces must vanish,
thereby generating a cusp in toroidal velocity

Peipot[Or Vior]/ Vi = Dai/ - (42)
wherep,.; . = p.iBior/ Bpoi- Radial ion force balance implies that

e(Er — Ene,i)/Ti = —0(r — r5)Dgi/Dne.i- (43)
Thus, there must be a jump in the electric potential

e[¢]/T; = Dg/Dne,i — Dg/ Do. (44)

This requires the sign of the jump in density and potentideqgroportional to the sign of the force in the layer,
as shown in Fig. 5. Assuming that, > D,,. ; would yield the sign of the potential shown in the figure.

Non-axisymmetric variations in magnetic field strengtledity generate a neoclassical toroidal viscous (NTV)
force. This force can be large enough to determine the dqiuith toroidal flow because the axisymmetric NTV
force is rather weak)(53) [92, 93]. The first analytic calculations of neoclassicahsport induced by islands
and resonant harmonics that were specifically for tokamakngry were performed in Ref. [86]. Calculations
of kinetic transport that include resonances between bmand toroidal precessional motion and include the
ideal MHD response fields in realistic geometry have beefopeed using IPEC [85]. The analysis of the
low-collisionality regime showed that trapped particlsarances between the bounce frequency and toroidal
precession frequency can cause a factor-ol00 times faster momentum damping than that expected from
analytic estimates for the relevamt— /v low-collisionality regime. MARS-K [94] has evaluated thiané&tic
effects on linear plasma response for RWM applications.d§netic islands are negligible, the so-called “super-
banana” plateau regime has been used to estimate the upgemiNTV [84, 95]. Although the maximum NTV
particle flux is relatively small, it can become large if magaislands open and become large enough to generate
an NTV force that scales @d3)/ B instead of 6 B/ B)*.

5.3 Stochastic transport

If the flux surface topology is altered by magnetic islandstmchastic regions, parallel transport along the
perturbed field lines will lead to a net radial flux with resptecthe original flux surfaces [96, 23]. The quasilinear
radial flux can be expressed in the form [97]

<1—‘£> = Dst,enee (Est.e - Er) /Te (45)
(Qr) = (L) Te — 2Dy T (46)
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where
Est,e = _p/e/ne - keTel- (47)

For weakly collisional regimes, the distribution functigmains close to a local Maxwellian and the cross-term
varies betweerk. = 0.71 (collisional) andk. = —0.5 (plateau). Quasilinear theory [96] predicts that the
diffusivity is limited to transport at the average therma¢sdD; = D (8 B/ B)? where the effective parallel
diffusivity is D ~ \/m/2VrqR. Rechester and Rosenbluth [23] predicted that in the amfiéd regime transport
occurs atthe rat®s; rr = krr/X| D) (6Bre./B)* wherekrp, is a prefactor that depends logarithmically on
collisionality. Ref. [98] determines a variety of alteragirefactors that depend logarithmically on the dominant
dissipation mechanism. The ion diffusivity is much smatkean the electron diffusivity sinc®;; ;/Dsi.. =
Viri [Vire ~ /me/m;. Hence, if parallel transport is dominant, the ambipojazdnstraint will force the electric
field to reach the valu&,, . [97]. Because the heat flux satisfies Eq. 46, electron thetmaasport remains
/m;/m. ~ 60 times larger than the particle flux even whHen= 0.

Quasilinear parallel transport scalesiag ~ 7,2., which depends sensitively on the reconnected flux. At
1 keV, the effective parallel diffusivities ar®; . ~ 10° m?/s and D ; ~ 10° m?/s for deuterium. For
§B/B ~ 10~*—1073, the quasilinear diffusivities are on the order of 1-1@%/s and 0.01-1n? /s, respectively.
Since H-mode transport coefficients are typically on theeoad 0.1-0.5m? /s, the electron thermal diffusivity is
far too large to fit measured profiles, but the particle andh@nmal diffusivities are in the range to compete with
H-mode edge transport [27]. The first calculations of stetihdhermal transport in realistic divertor geometry
[26, 27] were carried out for the DIII-D ELM control experimis using the E3D fluid transport code [99]. The
magnetic field perturbations were taken to be equal to thaeuradield perturbations, and substantial thermal
transport was generated, in good agreement with theoretitianates. While the initial H-mode equilibrium
state was in the collisionless regime, the final state hadedosufficiently that it became collisional. Hence,
the fluid calculation would have been vabdoosteriori if the vacuum field assumption had been correct. The
E3D calculation also observed clear changes to the heat daxthe strike point. The mapping of the invariant
manifolds that intersect the X-point describe the envelofpthe heat flux profile to the target plate [43]. The
strike-point splitting is linear in the perturbation stgtim for small perturbations and can be described by Mel-
nikov theory for small perturbations [27]. The E3D calcidatclearly showed this structure, in agreement with
the mapping. Subsequent studies using the EMC3-EIRENE flasma/kinetic neutral transport code [28] also
accounted for parallel flow), along stochastic field lines, but did not account for theteie@ield. While particle
transport was observed, the largest effect was in the riestuct the electron temperature. The implications of
these studies are sufficient to exclude standard modelsdiastic “vacuum” field transport.

When neoclassical transportis included in the analysisided 1D and 2D transport modeling of ELM control
discharges have shown that the deviatio&,ofrom the neoclassical value can produce enough particispat
to describe experimental results [36, 37]. This requiresdiochastic thermal transport to be suppressed by a
factor of 30 — 100 over the vacuum approximation, which can be achieved thHrangdest screening of the
applied fields. For a combination of stochastic and neoicalsgiscous transport, the ambipolar radial electric
field and fluxes are determined by the value

ENA - (a'st,eEst,e + a'nc,ignc,i)/(o'st,e + a'nc,i) (48)
(T'va) = (Est,e — EHC,i)/(U;}e + U;cl,i) (49)

whereog . = €Dy e/Te ando,.; = Z;eD,.;/T;. Stochastic transport will dominate oneg, . > oyc..
Thus, achieving large thermal transport would require ashold in perturbation strength

§Brec g Z'Te Dnci Te i Ync 2 e
> 2 i ZePeiV e (50)
B T; Dy, TiqRwe V mmy
If v.; ~ 1 andT, ~ T; at the separatrix, then the condition for thermal transfmexceed particle transport
requiresd B,/ B > (p.i/qR)(2m./mm;)*/* > 107> for a deuterium plasma, assuming that/qR ~ 10~*.

Thus, the experimentally relevant applied fields would béhi correct range for enhanced particle transport
rather than thermal transport if there is a modest screemiirije vacuum fieldsy,.. < 0.1. However, the
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experimental vacuum fields often generate weak stochigsfitiere is no screening, and even a modest screening
could eliminate island overlap.

Gyrokinetic simulations [29bf DIII-D discharge 126008hat used the vacuum field perturbation fields and
allowed an ambipolar electrostatic potentigl(r), constrained to be a function of unperturbed flux surfaces,
showed that the combined effects of particle trapping amd fhex limits reduced the magnitude of the stochastic
heat flux by a factor of 8. The enhanced transport was stificseifit to destroy the pedestal profiles for temper-
ature, density and the radial electric field. As predictef®if], a large positive radial electric field developed in
order to maintain ambipolarity, destroying ti& well. Particle transport was roughy 100 times larger than
the unperturbed axisymmetric case due to parallel trahspon-axisymmetric parallel pressure variations, and
NPV. Inside the pedestal the contributions from each chameee roughly equivalent, but the parallel pressure
variation dominated at the separatrix. The simulationsatestrated that NPV transpdrt. ; in a stochastic field
contributes a sizable fraction of particle transport, agdas parallel outflow’y, (as large as 1/3 of the total in
Fig. 2(f) of [29]), and~ 30 times larger than the axisymmetric case. The simulatioi fi28tches the analytic
result well, but demonstrates that there are other significamponents to the flux due to parallel outflowy
and the non-axisymmetric pressure gradignt Ref. [29] also explored an ad-hoc model for screening of the
perturbation fields that produced results that were mucleroensistent with experimental data. If the magnetic
perturbations are reduced in amplitude by a factor of 10 theeseparatrix, so that the separatrix flux surfaces are
retained, the electrons remain well confined by the fluxezg$. In this case, large transport develops at the top
of the pedestal, but not in the steep gradient region, angrtifdes are in qualitative agreement with experiment.
This indicates that screening of the perturbations in thegsgradient region is likely to be a good assumption.
However, Sec. 4 demonstrated that screening is likely tajbaley important across the entire pedestal. Thus, the
underlying transport mechanism at the top of the pedestaitisecessarily due to a stochastic field, but perhaps
due to a single island or a series of islands constraineditwed size by plasma response.

6 Interaction with turbulence

Experimental evidence suggests that there is a prompt ingpattirbulent fluctuations during the application of
the magnetic perturbations [39, 45]. The direct effect @&f thagnetic perturbation on the magnetic curvature
drive is predicted to be small due to the tendency to deve@g-&ligned mode structure; i.e. within the flute-
reduced ordering(b - Vb) ~ O(6?) [67]. In fact, Ref. [100] actually found a reduction in thedar growth
rate of drift waves due to the reduction in the density andonature gradients across a sufficiently large island.
However, Alfvén waves that develop a structure on the oofiéhe ion gyro-radius can directly mode-couple
to drift waves and can drive turbulent transport. Refs. [1@PR, 103] found that small-scale magnetic islands,
with a width on the order of the ion gyroradius, actually eddielectron drift waves. This mechanism causes
transport by drift waves that are not linearly unstable, dmet driven by the island structure that develops. In
the kinetic theory [101], radiation can propagate when tiation lies in the electron drift band of frequencies
Wex < w < 0;i.e. aslong asiw,. < 0. This region of the pedestal is shown as the green shadeshre§Fig.
1(b). One failing of the drift-MHD model is that it allows dirivave propagation and radiation [102, 103] for
0 < w < wy; as well, i.e. over the entire rangew; < 0, the entire green and red shaded region in Fig. 1(b).
Turbulent transport simulations including magnetic islensing the drift model have been explored numerically
by [104, 105, 1086].

In the steep gradient region of an H-mode pedestal, the flovsteeared strongly enough that they are believed
to suppress turbulence. Sheared flows break apart smatiéseby stretching the structure so finely that it
eventually reaches length scales where dissipation peswstrong damping. As described in Ref. [107] and
references therein, many models of the impact of sheariedigirthat a sheared flow will reduce the anomalous
diffusivity (proportional to turbulence amplitude) vidy,,;, = Do/ (1 + clws/~|") wherew, = —¢{ /B is the
flow shear frequencyy is the decorrelation rate of the mode ani$ a dimensionless parameter. The exponent
h = 2/3if the flow is laminar (linear shearing rate) ahd= 2 if the flow has an X-point or is chaotic (exponential
shearing rate). Ref. [108] derived a general non-Markowiaalel withh = 2, and a number of authors have
found this scaling for particular models of turbulence. $ha reduction in equilibrium flow shear could lead
to an increase in turbulent transport that would be of thesmbiorder of magnitude to explain the experimental
results.
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Increased damping of zonal flow fluctuations would lead tonailar increase in turbulent transport [107].
Zonal flows suffer little collisionless damping becausey/thary radially, but have no toroidal or poloidal depen-
dence to leading order. In simulation, these secondarghiigies are observed to be pumped to large amplitudes
by the modulational instability where they then regulatettirbulent amplitude by shearing. A simple predator-
prey model in which the turbulent amplitugedrives a secondary instability that is capable of turning off the
transport was introduced in [107] (using slightly-diffat@otation):

d(¢?)/dt = 7(8?) = a(#*)(V?) =/ (¢*)" d(V?)/dt = a(¢*)(V?) —v(V*)  (51)

where(X) is the ensemble average &f. Here,y is the growth rate and’ is the nonlinear damping rate of the
drift-wave ¢, andv is the linear damping rate of the zonal flav This model conserves the energy between the
shearing apart of drift waves and the pumping of the zonald]@xchanged at rate The model clearly has a
stationary state at the point where there is no f(dﬂ\?) = 0 and the turbulence amplitude is set by nonlinear
damping:<¢2> = v/v/. There is also an equilibrium with both flow and turbulencer. fielatively weak nonlinear
dampingvy’ < o?, the dynamic equilibrium i§¢?) ~ v/a and(V?) ~ y/a. This simple model yields the
important conclusion that the turbulent flux increasessthpwith the zonal flow damping rate; ifrg n. /¢ = §
thenDy b o <¢)2 sind = (v/a)sind. Thus, an increase in the damping of zonal flows could caugecagase

in anomalous diffusivity. An order unity increase in dangpivould be of the correct order of magnitude to
explain the observations.

7 Conclusion

In conclusion, the physics of ELM control using magnetictpdrations involves a rich interplay of various
physical processes that possess nontrivial variationpldbma parameters. Two important physics issues appear
to be resolved: (i) The dependence@nshaping, and other aspects of the perturbation spectriikelg to be
due to resonant field amplification of the applied pertudyei (ii) A stochastic layer is not likely to form within
the steep gradient region of the pedestal. The appearasteatéd strike point patterns is not inconsistent with
a perturbed layer outside of the steep-gradient regioneptdestal, but essentially no stochasticity inside of
the steep-gradient region. However, a single island may fogar the region where, = w — w,. ~ 0, which
typically occurs at the top of the pedestal, due to the steagignt in electron temperature. The implications
of this possibility are still under investigation becaulsedretical models that incorporate finite Larmor radius
effects are required when the perturbation frequency iserotder of the drift frequency and/or when the size
of the non-ideal region approaches the ion gyroradius. Epexdence on collisionality is likely to be due to the
mechanism for enhanced transport.

This article assessed three broad hypotheses for enhanairgport with non-axisymmetric magnetic fields:
(i) enhanced transport due to an island or stochastic Igijeenhanced axisymmetric neoclassical transport
due to the change in ambipolar electric field, and (iii) iat#ions with turbulence. For small islands, outward
transport due to either magnetic flutter fluxes or radiatibdrdt waves requires a zone of rotation where ions
and electrons rotate in opposite directions relative toptigurbationuv.w; = (w — wse)(w — wyi) < 0. The
opposite condition yields enhanced confinement and differe in the pedestal rotation profile may explain the
difference between high and low-collisonality ELM supsies results. All of the proposed mechanisms may
be active simultaneously or yet another process may be meigge. The identification and determination of the
process that dominates over a given span of collisionaitecessary for extrapolation to future devices.
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